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The ANSI/IEEE Standard 854-1987 for floating-point arithmetic is interpreted by
converting the lexical descriptions in the standard into mathematical conditional
descriptions organized in tables. The standard is represented in higher-order
logic within the framework of the HOL system. The paper is divided in two parts
with the first part the interpretation and the second part the description in HOL.

The objective of this work is to provide a representation of the IEEE-854[6] standard in a formal logic
system against which implementations can be verified using deductive reasoning. Before the standard
could be represented in the formal system it was necessary to extract the meaning of the standard for
numerous conditions and cases. Hence, the interpretation of the standard became part of the effort. Paul
Miner provided valuable discussions to aid in the standard interpretation and worked in a similar effort to
specify the IEEE-854 standard in the PVS system[7].

Previous efforts to represent a floating point arithmetic standard in a formal language include the par-
tial formalization of the ANSI/IEEE-754-1985[5] standard in the Z language by Geoff Barret[1] and in the
HOL system by Jing Pang[8]. IEEE-854 is a generalization of IEEE-754. IEEE-854 does not specify
encoding formats for floating-point numbers and permits the representation of floating-point numbers in
the binary and decimal systems.

The interpretation of the standard is not intended to replace the standard but rather aid in its under-
standing. Although the standard has been reviewed meticulously to get a full understanding of its meaning,
errors probably exist in the interpretation. Any discrepancies between the interpretation and the standard
should be considered an interpretation error and the standard should take precedence.

Part 1: Interpretation

1 Introduction

This part of the paper covers the interpretation of ANSI/IEEE Standard 854-1987. The interpretation
consists of the definition of 29 tables which address the cases found during floating-point rounding and
arithmetic operations. Operations on infinity, zero, and symbolic entries, as well as exceptions and traps
are incorporated directly in the definition of each operation rather than in separate sections.

2 Floating-point Numbers and Precisions

This section contains a brief definition of floating-point numbers and floating-point precisions. A float-
ing-point number is a digit string characterized by three components: a sign digit, a signed exponent, and a
significand. A floating-point number can have three meanings: 1. a value; 2. an infinite; and 3. not a num-
ber (NaN). Values, infinities, and NaNs are further divided into classes. A value could be a normal number,
subnormal number, or zero. An infinite could be positive or negative. NaNs could be signaling or quiet. A



subnormal number is a nonzero valued number whose magnitude is less than the base raised to the preci-
sion’s minimum exponent. IEEE-854 defines four precision: single, double, single extended, and double
extended. Each precision is defined by the following parameters:

b = the radix or base

p = the number of base-b digits in the significand
E, . =themaximum exponent

E, ;. =theminimum exponent

For all precisions, the parameters are subjected to the following constraints:

b shall be either 2 or 10 and shall be the same for all supported precisions
(E,,2x—E min) /P shall exceed S and should exceed 10

¥ 1210

Additional constraints are imposed on the parameters for double, single
extended, and double extended precisions. For double precision:
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where the subscripts d and s denote double and single precisions respectively. For extended precision, the
following constraints must hold over the base precision:
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where the subscript e and b denote the extended and base precisions.

Thus, each precision allows the representation of just the following
entities:

1. Numbers of the form (—ls)bE(dO.dldz...dp_l) where

s = anatural number defining the algebraic sign
any integer between E .
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2. Two infinities, + % and —
3. Atleast one signaling NaN
4. At least one quiet NaN

3 Exceptions and Traps

Operations on floating-point numbers, defined in succeeding sections, can signal exceptions as a result
of performing the operation. The generation of exceptions will depend on operands, results, and operation
conditions. Five exceptions are signaled when detected:

Invalid operation
Division by zero
Overflow
Underflow
Inexact

An exception will set a status flag and, if enabled by the user, will invoke an exception handling trap. If
exception handlers are implemented then each exception should have a user controlled trap associated with

1t.
The resulting value on some operations will depend on whether an exception is detected and a trap is

enabled. Conditions which will result in exceptions will be defined within the operation’s definition.

4 Rounding

Floating-point numbers are intended to be a finite approximation of the real numbers. Rounding is
defined in the IEEE-854 standard thus,

Rounding takes a number regarded as infinitely precise and, if necessary, modifies it to fit the destina-
tion’s precision while signaling the inexact exception (see 7.5). [6, section 4, page 9]

Four rounding modes are specified in the standard:

An implementation of this standard shall provide round to nearest as the default rounding mode.[...]
An implementation of this standard shall also provide three user-selectable directed rounding modes:

round towards + o, round towards —, and round towards 0. [6, section 4.1, page 9]

In addition, depending on the magnitude of the number to be rounded and the rounding mode, rounding
can produce infinite floating-points while signaling other exceptions:

The rounding modes may affect the signs of zero sums (see 6.3), and do affect the threshold beyond
which overflow (see 7.3) and underflow (see 7.4) may be signaled. [6, section 4, page 9]



Round to near returns the floating-point number with value nearest to the infinitely precise number. If
two floating-point number values are equally near, round to near returns the one with least significant digit
even. Round to positive infinity returns a floating-point number with the smallest value which is greater
than the infinitely precise number. Round to negative infinity returns a floating-point number with the
greatest value less than the infinitely precise number. Round to zero returns a floating-point number with
the largest magnitude which is less than the infinitely precise number.

The following tables summarize the interpretation of the standard for all value ranges of real numbers

to be rounded. G, g’ Gpos , Lneg , and Lpa . Tepresent, respectively, the greatest negative, greatest posi-

tive, least negative, and least positive finite floating point number representable in a given precision. The
tables give the result and exceptions, if any, of the rounding operation for a given infinite precision number
and a rounding mode. Three possible exceptions can be signaled by the rounding operation: underflow,
overflow, and inexact.

Overflow detection when the overflow trap handler is implemented and enabled will deliver to the trap

handler the infinitely precise result of the operation divided by b® and then rounded. The exponent adjust-

ment a is chosen to be approximately 3 ( (E E,.)/4) and should be divisible by twelve.

max "~

Table 1: Negative numbers less than G,

Overflow E 41 E+1 E, 1,1 E 1
max _p mex _J, mex _2 -p _Jp mex _31 1 -P)
mode trap r<b b <rs-b (b-3b""7) | b " (b-3b""7) <r<G,,,
disabled [-inf, overflow, -inf, overflow, inexact Greg inexact
inexact
near enabled G ., inexact
a a X
round(r/b "), round(r/b "), overflow, neg’
overflow, inexact |inexact
disabled |¢, ,overflow, |G, ,inexact G,.,» inexact
. inexact
pos_inf
enabled a G ___,inexact G___, inexact
round(r/b ), neg’ neg’
overflow, inexact
disabled | -inf, overflow, -inf, overflow, inexact -inf, overflow, inexact
inexact
neg inf
& enabled a a a
round(r/b "), round(r/b "), overflow, round(r/b"),
overflow, inexact |inexact overflow, inexact
disabled Greg overflow, G,.g» ineXact G,q> iNEXAC
inexact
zero
enabled a G,  ,inexact G, . ,inexact
round(r/b "), neg? neg’
overflow, inexact




When the value resulting from a rounding operation is not equal to the infinitely precise num-
ber the inexact exception is signaled. The inexact flag is represented by excl and is defined in

table 10.

Table 2: Negative numbers greater than or

equal to G, and less than or equal to -5

mode

G,. srs-b

Emi-
g

all modes

e =
normal, excl

Underflow detection when the underflow trap handler is implemented and enabled will deliver to the

trap handler the infinitely precise result of the operation multiplied by b® and then rounded. The exponent

adjustment a is the same as used for overflow. exc2 is the underflow exception flag defined in table 11.
Underflow detection depends on the rounding result, detection scheme selected by the user, and/or traps

enabled.

Table 3: Negative numbers greater than -5 and less than or equal to L.,

Epiw 1
underflow E,. E. 1 b =Sl <r E.
mode trap -b " <rs-b"" - ELnex £ -b -L, srsL,,
re-b™ _Lneg
— — .  ————— |
i E . . E . .
zilsali))llec(li or —b™ inexact, exc2 | -p""-L,_, inexact, denormal, excl, exc2
enabled, no
near underflow) exc2
enabled and a a a
underflow round(r x b°), round(r x b ™), round(r x b"),
detected inexact, underflow inexact, underflow inexact, underflow
disabled or _pEmn_ g _pEm_g denormal, excl, exc2
(enabled, no |, neg’ ' neg?
pos_inf | underflow) | nexact, exc2 inexact, exc2
enabled and a a
underflow round(r x b ), round(r x b "), round(r x b%),
detected inexact, underflow inexact, underflow inexact, underflow




Table 3: Negative numbers greater than —5"* and less than or equaltoL

E-iu 1
-b """ =-ZL __<r
underflow E i Epin 1 2 nes E pin
mode teap b ™ <rs-b""-3L,, . -b "L, srsl,
r<—b -l.—Lnex
—_———  —— ——— |
i Epin - Epw »
Ehsal:)llec:l or 5" _inexact, exc2 | -b""*, inexact, exc2 denormal, excl, exc2
enabled, no
neg_inf | underflow)
d
zzfll;]r:}c:):/n round(r x b%), round(r x b%), round(r x b%),
detected inexact, underflow inexact, underflow inexact, underflow
disabled or E, E,. . denormal, excl, exc2
(ensbled, no =b ™ =L, -b"™"-L,,,, inexact, ’ ’
610 ung;,rﬂ ox’av) inexact,exc2 exc2
abled and
le]:l] derflow round(r x b® )s round(r x b® ), round(r x b® ),
detected inexact, underflow inexact, underflow inexact, underflow
Table 4: Negative numbers greater than L
mode underflow trap L, <r< %LM " Lnegs7<0
— — —
near disabled L,,,, inexact, underflow -0, inexact, underflow
enabled
round(r x b® ), round(r x b® )
inexact, underflow inexact, underflow
pos_inf disabled -0, inexact, underflow -0, inexact, underflow
enabled
round(r x p® ), round(r x b® ),
inexact, underflow inexact, underflow
neg_inf disabled L, inexact, underflow Lyes inexact, underflow
enabled
round(r x b® ), round(r x ba),
inexact, underflow inexact, underflow




Table 4: Negative numbers greater than L

mode underflow trap L <r< %L" . %Lne gS7<0

Zero disabled -0, inexact, underflow -0, inexact, underflow
enabled round(r x ba), round(r x b® ),
inexact, underflow inexact, underflow
Table S: Zero

mode (-0) + (=0) | (+0) + (+0) sxirz’(?gii:(;gz'r)lif(j)ﬂ) +0 x fp -0 xfp
near -0 +0 +0 sign(fp)0 sign(-fp)0
pos_inf | -0 +0 +0 sign(fp)0 sign(-fp)0
neg_inf | -0 +0 -0 sign(fp)0 sign(-fp)0
zero -0 +0 +0 sign(fp)0 sign(-fp)0

sign(fp) is the algebraic sign of the floating point number fp. v(fp) denotes the value of the finite float-

ing point number fp and v(fpl)+v(fp2) is the infinitely precise addition of the values of fpI and fp2.

Table 6: Positive numbers less than L,

a
round(r x b ),
inexact, underflow

mode underflow trap O<rs %Lw %L‘m <r<l,,
— |
disabled +0, inexact, underflow L,y inexact, underflow
near
enabled a a
round(r x b ), round(r x b"),
inexact, underflow inexact, underflow
disabled L,,,, inexact, underflow | L, inexact, underflow
pos_inf
enabled a a
round(r x b ), round(r x b ),
inexact, underflow inexact, underflow
disabled +0, inexact, underflow +0, inexact, underflow
neg inf
g enabled

a
round(r x b7),
inexact, underflow




Table 6: Positive numbers less than L,

mode

underflow trap

0<rssl,,

_ e e e e e e e,

1
in”<r<Lp”

disabled +0, inexact, underflow +0, inexact, underflow
Zero
enabled
round(r x b%), round(r x b%),
inexact, underflow inexact, underflow
Table 7: Positive numbers greater than or equal to L__ and less than 5
g q ‘pos
d underflow E.. E.. E.. 1 E 1 £,
mode trap Lpos srsb —Lpo_\_ b —L[m_v <r<b ™ - iLP"-' b ™ _ ELPOS sr<b
e — e |
disabled or | denormal E,, E,,
3 b min "L excl excz b min CXCI excz
(enabled, no | excl,exc2 pos ? ’ , ,
near underflow)
enabled and
underflow round(r x b°), round(r x b°), round(r x b%),
detected inexact, underflow | inexact, underflow inexact, underflow
i E_. E .
disabled or | denormal, B5 excl, exc2 5 excl, exc2
(enabled, no | excl,exc2
pos_inf | underflow)
enabled and
underfiow | Found(rxb ") round(r x b%), round(r x b%),
detected inexact, underflow | inexact, underflow inexact, underflow
disabled or | denormal, E,., E..
(enabled, no | excl,exc2 b™-L,,,,excl, exc2 b™-L,,,excl, exc2
neg_inf | underflow)
enabled and
underflow round(r x b°), round(r x b°), round(r x b%),
detected inexact, underflow | inexact, underflow inexact, underflow
disabled or | denormal, E,.. E..
(enabled, no | excl,exc2 b™-L,,,, excl, exc2 | b™-L,,,, €xcl, exc2
Zero underflow)
enabled and
underflow | FOund(r x b%), round(r x 5%), round(r x b%),
detected inexact, underflow | inexact, underflow inexact, underflow




Table 8: Positive numbers greater than or

equal to 5= and less than or equalto G,

all modes

normal, excl

Overflow detection will deliver to the trap handler the infinitely precise result divided by b® and then

rounded, when the overflow trap handler is implemented and enabled. The exponent adjustment a is as

defined in page 4.
Table 9: Positive numbers greater than G,
Overﬁow Eux 1 l—p En.z 1 l—p E",+1 E +1
mode trap | Cros<7<t (b-36"7") | b (b-36""F) sr<b pEmestl
—— e — — — —_— |
disabled G s inexact +inf, overflow, inexact +inf, overflow,
inexact
near enabled G___, inexact
X a a
pos’ round(r/b ), overflow, round(r/b7),
inexact overflow, inex-
act
disabled | +inf, overflow, inexact | +inf, overflow, inexact +inf, overflow,
inexact
pos_inf
- enabled a a a
round(r/b "), over- round(r/b "), overflow, round(r/b "),
flow, inexact inexact overflow, inex-
act
disabled G,,s» inexact G, inexact Gposs overflow,
inexact
neg_inf
enabled G, inexact G, _, inexact a
pos’ pos® round(r/b "),
overflow, inex-
act




Table 9: Positive numbers greater than G,

mode onrr:pow Gpos<r<b ™ (b=25"77) | ™ (6-25"77) ar< pmt! pEmeetl_ )
————t — ——— ———

disabled | G,,,, inexact G,,,» inexact G,,s» OVerflow,

inexact
Zero

enabled | G,,,, inexact G, 4> in€XAC round(r/b%),
overflow, inex-
act

Exception excl depends on whether or not the rounded result is equal to the infinitely precise number.
excl is inexact if r and round r are not equal, and no exception if they are equal.

Table 10: excl inexact exception flag

mode (roundr)=r | (round r) =r
—_— |
all inexact = false | inexact = true

Underflow exception, exc2, depends on the detection of tininess, loss of accuracy, and whether the
underflow trap is enabled or disabled. When the underflow trap is disabled, both tininess and loss of accu-
racy must be detected to signal underflow. When the underflow trap is enabled detection of tininess results
in an underflow flag.

Table 11: exc2 underflow exception flag

mode underflow trap disabled underflow trap enabled

all tiny A loss_acc = underflow | tiny = underflow

Detection of tininess and loss of accuracy is user selectable. Tininess can be detected before
or after rounding.

Table 12: Tininess detection before

rounding
E_. E
mode 0<|r|<b min b uuslri
===z=
all true false

10



Table 13: Tininess detection after rounding

mode

Enil E-iu
-b " <rs-b " -

1
iL neg

1

Eui-
O<|rl<b = 5L pos

E

b .l'n_

1

E i
3 P“sr<b -

E_,
b-t.‘|'1

near false true false false

pos_inf true true false faise
neg_inf false true true false
Zero true true true false

Loss of accuracy can be detected by denormalization loss or by inexact. Detection of denormalization
loss is defined in IEEE-854 as follows:

A denormalization loss: When the delivered results differs from what would have been computed were
the exponent range unbound. [6, section 7.4, page 15]

An unbound exponent range gives p digits of accuracy regardless of the number’s magnitude. Consider for
example the number

E_.
r=b" 0.00..0d

00...0d

2-1 2p-1
pP p
where,
d =a=0 andd2P_1=B=:0

p-1

This number, when rounded to near with the exponent range unbound, will result in:

E...-(p-1
BV 0.
where,

d, = a and d,_,

0d,_,

=f

Rounding to near with the exponent range bounded will give:

E.iu
b ""0.00...00d, _,
where,

dp—l =a

The loss of accuracy due to rounding with the exponent range bounded is |r- (round r)| = g x b

-(2p-1)

11




(for rounding to near) the delivered result with exponent

1 1-
In general, when |r— (round r)| > %bl oBar]* (1-p)

bound will differ from the result with exponent unbound and loss of accuracy shall be detected. Other
rounding modes have different detection thresholds as given in the next table.

Table 14: Loss of accuracy detection by denormalization loss

mode _pon g g pmnt 1P 05:.1'1 (1-2) pimint B B b < ]
I <b
pos_inf ((roundr) —r) = ( plioBr )t (1—p)) true ((roundr) -r) >0 false
neg_inf | (r- (roundr)) >0 true (r= (round 1)) = ( plicgr]+ =) ) false
Z€ero ((roundr) ) ( bLlox.,rj + (1—p)) true (r= (round 7)) 2 (bLloz.r_I + (l-p)) false

Table 15: Loss of accuracy
detection by inexact

mode Vr

all (round r) =r

5 Operations

Implementations conforming to the IEEE-854 standard must provide the add, subtract, multiply,
divide, square root, remainder, round to floating point integer, conversion between precisions, conversion
between floating point and integer numbers, conversions between floating point numbers and decimal
strings, and compare operations. The arithmetic operations are shown in tabular form for all floating-point
arguments.

5.1 Arithmétic

12



Table 16: Floating-point addition

fp1

fp2

quiet NaN -0 +0 finite = 0 -inf +inf
quiet quiet quiet quiet quiet
NaN, NaN, NaN, NaN, NaN, NaN, NaN,
invalid |invalid |invalid |invalid |invalid [invalid |invalid
quiet quiet fp1V fp2 |fp2 fp2 fp2 fp2 fp2-

NaN NaN,
invalid

-0 quiet fp1 -0 round(0) |fpl -inf +inf
NaN,
invalid

+0 quiet fp1 round(0) |[+0 fpl -inf +inf
NaN,
invalid

finite quiet fp1 fp2 fp2 round ( |-inf +inf

20 NaN, v(fpl)+
invalid v(fp2))

-inf quiet fpl -inf -inf -inf -inf quiet
NaN, NaN,
invalid invalid

+inf quiet fpl +inf +inf +inf quiet +inf
NaN, NaN,
invalid invalid

v(fp) denotes the value of the finite floating point number fp and v(fp1)+v(fp2) is the infinitely precise
addition of the values of fpI and fp2.
Floating-point subtraction is defined in terms of floating-point addition. The unary negation operation
“-” will change the algebraic sign of a floating-point number by changing its sign digit. The negation oper-

ation will change the sign of finites and infinities and will leave NaNs unchanged.

Table 17: Floating-point
subtraction

fp2

fp1 sub fp2

_

fp1

fp1 add (-fp2)

13



Table 18: Floating-point multiplication

fp1
fp1 mul fp2
sig NaN |quiet NaN -0 +0 finite = 0 -inf +inf
sig NaN |quiet quiet quiet quiet quiet quiet quiet
NaN, NaN, NaN, NaN, NaN, NaN, NaN,
invalid invalid invalid invalid invalid invalid invalid
quiet quiet fp1Vip2 |fp2 fp2 fp2 fp2 fp2
NaN NaN,
invalid
-0 quiet fp1 +0 -0 sign(-fp1) |quiet quiet
NaN, 0 NaN, NaN,
invalid invalid invalid
2
P +0 quiet fp1l -0 +0 sign(fp1)0|quiet quiet
NaN, NaN, NaN,
invalid invalid invalid
finite quiet fp1 sign(-fp2) [sign(fp2)0|round( sign(-fp2) |sign(fp2)
=20 NaN, 0 v(fpl) X [inf inf
invalid v(fp2))
-inf quiet fp1l quiet quiet sign(-fp1) |+inf -inf
NaN, NaN, NaN, inf
invalid invalid invalid
+inf quiet fpl quiet quiet sign(fpl) |-inf +inf
NaN, NaN, NaN, inf
invalid invalid invalid

14




Table 19: Floating-point division

fpl div fp2

fp2

fp1
sig NaN |quiet NaN -0 +0 finite =0 -inf +inf
sig NaN [quiet quiet quiet quiet quiet quiet quiet
NaN, NaN, NaN, NaN, NaN, NaN, NaN,
invalid |invalid |invalid |invalid [invalid |invalid |invalid
quiet quiet fp1Vip2 |fp2 fp2 fp2 fp2 fp2

NaN NaN,
invalid

-0 quiet fp1 quiet quiet sign(-fp1) |+inf, -inf,
NaN, NaN, NaN, inf, div_zero |div_zero
invalid invalid [invalid [div_zero

+0 quiet fp1 quiet quiet sign(fpl) |-inf, +inf,
NaN, NaN, NaN, inf, div_zero |[div_zero
invalid invalid [invalid |div_zero

finite  |quiet fp1 sign(-fp2) |sign(fp2)0|round(  |sign(-fp2) |sign(fp2)

=0 NaN, 0 v(fpl) + inf inf
invalid v(fp2))

-inf quiet fp1 +0 -0 sign(-fp1) |quiet quiet
NaN, 0 NaN, NaN,
invalid invalid  |invalid

+inf quiet fpl -0 +0 sign(fp1)0jquiet quiet
NaN, NaN, NaN,
invalid invalid  [invalid

15



The reminder operation x REM y is defined by x — (y x n) for non-zero values of y, where n is the
integer nearest to x/y.

Table 20: Floating?point remainder

fp1
fpl REM {p2 i :
g quiet i . P .
NaN | NaN 0 +0 finite = 0 inf +inf
=_— #:
sig quiet |quiet |quiet |quiet |quiet NaN, invalid quiet | quiet
NaN |[NaN, |[NaN, |NaN, |NaN, NaN, |NaN,
invalid |invalid |invalid |invalid invalid |invalid
quiet |quiet |fp1Vip2|fp2 fp2 fp2 fp2 fp2
NaN |NaN,
invalid
-0 quiet | fpl quiet |quiet [quiet NaN, invalid quiet |quiet
NaN, NaN, |[NaN, NaN, |NaN,
invalid invalid |invalid invalid |invalid
2
fp +0 quiet | fpl quiet |quiet [quiet NaN, invalid quiet  |quiet
NaN, NaN, [NaN, NaN, |[NaN,
invalid invalid |invalid invalid |invalid
finite (quiet |fpl -0 +0 v(fpl) - (v(fp2) X n) quiet | quiet
=0 NaN, n = nearest NaN, |NaN,
invalid integer (v(fp1)/v(fp2)) |invalid |invalid
-inf quiet | fpl fpl fpl fpl quiet | quiet
NaN, NaN, |NaN,
invalid invalid |invalid
+inf |quiet |fpl fpl fpl fpl quiet | quiet
NaN, NaN, |NaN,
invalid invalid |invalid

When two possible values of n are equally near to x/y then n is even. If x— (y x n) is zero then
x REM y is +0 for positive x and -0 for negative x regardless of the rounding mode. Infinite arith-
metic is defined in IEEE-854 as the limiting case of real arithmetic. To define the remainder function when

x is finite and y is infinite, the limit is calculated as lim (x-=(yxn)) =x
y— [>2]

5.2 Square Root

The square root operation is defined for all non negative floating-point numbers. The square root of -0
shall be -0.

16



Table 21: Square root

fp1
SQR fpl . .
sig quiet i . . yr .
NaN | NaN 0 +0 | finite <0 finite > 0 inf +inf
quiet |fpl -0 +0 quiet round Jv(fo1) |quiet  |+inf
NaN, NaN, V(e QN
invalid invalid invalid

5.3 Floating-point Precision Conversion

Conversion between floating-point numbers of all precisions shall be possible. When converting from
a lower to a higher precision the result will be exact. Conversion from a higher to lower precision may sig-

nal inexact.

Table 22: Floating-point precision conversions

fp1l
fpltofp2 sigNaN | 4t | g +0 |finite =0 | -inf | -+inf
g NaN nite in
narrower pre- |quiet fpl -0 +0 round -inf +inf
cision NaN, v(fpl)
fp2 invalid
sir;;l- wider quiet fpl fpl fpl fp1l fp1 fpl
precision NaN,
invalid

5.4 Conversion Between Floating-point and Integer

Standard IEEE-854 specifies that compliant implementations must provide conversion between float-
ing-point and integer number encodings. However, integer encoding is not in the scope of IEEE-854.
When conversion from a floating-point to an integer number precludes a faithful representation, an invalid
exception shall be raised. An exception may arise due to conversion of NaNs, infinities, or on overflow
when the floating point value exceeds the maximum value of the integer encoding. When a representation
does not exists for NaNs or infinities in the integer encoding, or if overflow occurs, the conversion result
represented in table 23 by res_exc4 is undefined, invalid.

exc3 exception flag is inexact if the value after conversion is not equal to the floating-point value
before conversion. Conversion from an integer to a floating-point number should always be exact. If inte-
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ger encodings of -0 and +0 is possible then conversion between floating-point and integers shall preserve

the zero sign. When no such encoding exists for integer numbers, conversion of zero should result in +0.

Table 23: Floating-point to integer conversion

fpl
Pl to Integer sighaN | et | o0 finite = 0 -nf | +inof
NaN
near quiet fpl or -0 |+0 |Gif Lv (fp1) | i; even |-infor +inf or
NaN, res_exc4 |or [Or |then res_exc4 |res_exc4d
invalid 0 |0 [2xv(fp1)] exc3
or 5
res_exc4 e-lse -
(2 x vz(fpl) 17 exc3)
rounding or res_exc4
mode pos_inf |quiet fplor  |-0 [+0 [([v(fp1) ], exc3) -infor |+infor
NaN, res_exc4 |or |or |orres excd res_exc4 |res_exc4
invalid 0 |0 -
or
res_exc4
neg_inf |quiet fpl or -0 1+0 l(Lv(fp1) J, exc3) -infor |+infor
NaN, res_exc4 |or |0r |orres excd res_exc4 [res_exc4
invalid 0 |0 -
or
res_excé4
Zero quiet fplor |[-0 |+0 |(if fp1 > O then -infor |+infor
NaN, res_excé4 |or |or || v( fp1) |, exc3 res_exc4 |res_exc4d
invalid 0 10 lese [v (fp1) 1, exc3)
or or res_exc4
res_exc4 -

exc3 = IF integer(fp)= value(fp) THEN inexact=false ELSE inexact=true
res_exc4 = undefined, invalid
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Table 24: Integer to floating point conversion

fp

Integer to fp

Integer

+0or0

+0

v(fp)=(value(integer))

finite = 0

5.5 Round Floating-point Number to Integral Value

Conversion from floating-point to integral valued floating-point rounds a floating-point number,
according to the rounding mode, to a floating-point in the same precision with an integer value.

Table 25: Floating-point to integral valued floating-point

rounding
mode

fpl to fp2

fp1
s 1‘{;‘;;‘ 0| +0 finite = 0 -inf | +inf
—_— — ==m

near quiet |[fpl | -0 |+0 |v(fp2)= -inf +inf

NaN, (if Lv(fp1) ] is even

invalid then lrz %V (f£1) -]J

2
else
[Lz X V(fpl) J ),exc3
2

pos_inf | quiet | fpl 0 |40 v(fp2) = [v(fpl) 1, -inf +inf

NaN, exc3

invalid
neg_inf | quiet |fpl |[-0 |+0 |v(fp2)=Lv(fpl) ], -inf +inf

NaN, exc3

invalid
zero quiet | fpl |-0 | +0 | v(fp2)=(if v(fpl) >0 | -inf +inf

P P
NaN, then v (fp1) | else
invalid [v(fp1) 1), exc3

exc3 = IF v(fpl) = v(fp2) THEN inexact = false ELSE inexact = true
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5.6 Conversion Between Floating-point and Decimal String

Decimal strings are strings of characters representing decimal numbers. The format of decimal strings
is not covered by IEEE-854. An uninterpreted function format is defined which takes the floating-point

=N .
value v(fp) and converts it to a decimal string value represented by +M x 10" . The function value
extracts the value of a decimal string.

Table 26: Decimal string to floating-point conversion

DS

DS to signaling | unrecog- +inf or

quiet .  |t0or -infor | +infinity or

fp NaN Nﬁl:; r nsltz:sle 0 0 | -infinity| infor value(DS)
g infinity

quiet signaling |quiet -0 |+0 [-inf +inf round(value(
fp NaN NaN NaN, DS))

invalid

Table 27: Floating-point to decimal string conversion

fp

fp to

DS quiet | signaling ) y : ,
NaN NaN 0 +0 inf +inf finite = 0

‘NaN’ [‘NaN’, |value(DS) |value(DS) |‘-inf’ or [‘inf’ or |format(v(fp))
DS invalid |=0 =0 ‘-infinity’ |‘infinity’

The function format must have the property round (value (format(v(fp)))) = fp when
rounding to nearest and conversions from floating-point numbers to decimal strings are performed such

[plog,(2) +1] b =2

that M has D digits of precision where D = {
4 b =10

5.7 Comparison

For any two arbitrary floating-point numbers, one and only one of the following relations must hold:
“less than”, “equal”, greater than”, or “unordered”. Comparison operations can be implemented in two
possible ways: 1) A comparison will return as a result one of the four relations above; 2) A predicate
defines a specific relation between two floating-point numbers and the comparison returns true if the pred-
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icate holds on the arguments and false otherwise, possibly together with an exception. Tables 28 and 29
describe the relation and predicate implementation options. The predicates in Table 29 are defined in terms
of the relations of Table 28. Note that for Table 28, if fpI is a NaN and fp1 = fp2 the result of a comparison
is still unordered. That is, a NaN compares unordered with itself.

Table 28: Floating-point comparison: relations

fp1
negative ositive
fp1 comp fp2 . quiet ﬁg' Pﬁ. . _
sig NaN nite -0 +0 nite -inf +inf
NaN
=0 =0
sig NaN]unor- unor- unor- unor- unor- unor- unor- unor-
dered, dered, dered, dered, dered, dered, dered, dered,
invalid |invalid |invalid [invalid |invalid |invalid |invalid |[invalid
quiet |unor- unor- unor- unor- unor- unor- unor- unor-
NaN dered, dered dered dered dered dered dered dered
invalid
nega- |unor- unor- less than |greater |greater |greater |less than |greater
tive dered, |dered or equal [than than than than
finite |invalid or
=0 greater
than
-0 unor- unor- less than |equal equal greater |less than |greater
fp2 dered, |dered than than
invalid
+0 unor- unor- less than |equal equal greater |less than |greater
dered, dered than than
invalid
posi-  |unor- unor- less than |less than |[less than |less than |less than | greater
tive dered, |dered or equal than
finite |invalid or
=0 greater
than
-inf unor- unor- greater |greater |greater |greater |equal greater
dered, dered than than than than than
invalid
+inf unor- unor- less than |less than |less than |less than [less than |equal
dered, dered
invalid
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Table 29: Floating-point comparison: predicates

fp1 predicate fp2 relation
predicates ~

ASCIL | Fortran | Math. less than equal greater than | unordered
= EQ. = false true false false
<> .NE. ” true false true true
> .GT. > false false true false, invalid
>= .GE. > false true true false, invalid
< .LT. < true false false false, invalid
<= .LE. < true true false false, invalid
? .UN. false false false true

Part 2: Definition in HOL

1 Introduction

This part of the paper presents the definition of the IEEE-854 standard in the HOL system[2].The stan-
dard is formalized using the higher-order logic language available in the system. The HOL system’s logic
is Church’s simple theory of types with polymorphic and definitional extensions. The HOL system is a
general purpose mechanized theorem prover. The system supports both forward and backward proofs. The
forward proof style applies inference rules to existing theorems to obtain new theorems and eventually the
desired theorem. Backward or goal oriented proofs start with the goal to be proven. Tactics are applied to
the goal and subgoals until the goal is decomposed into simpler existing theorems or axioms.

By defining the IEEE-854 standard in the HOL system, it is possible to show that the standard meets
given requirements. Desirable properties of the standard can be formulated in the logic and proofs can be
constructed in the system to show that the formalization of the standard complies with stated properties.

The system basic language includes the natural numbers and boolean type. John Harrison’s reals
library[4] and Elsa Gunter’s integer library[3] are used, respectively, for the definition of the real and inte-
ger types. The real and integer numbers are used as part of the IEEE-854 formalization. In the HOL system

the symbol ? represents 3, ! represents V, and @ is the choice or Hilbert operator. Entries in the HOL
system are represented by the courier (type-writer) font.

22



2 Floating-point Numbers and Precisions

The four parameters defining a precision, b, p, Emax, and Emin, are defined in the HOL system by
declaring b as a constant and placing constraints on the values of p, Emax, and Emin. b and p range over
the natural numbers (type ”:num”) and Emax and Emin range over the integers (type ":integer”). The value
of constant b is either 2 or 10.

new_definition(°b",
“b = @n.(n=2)\/(n=10)");;
The formula “@n. (n=2)\/(n=10)" can be read “chose an n such that n=2 or n=10.” The number

of digits p is restricted in all precisions by the constraint b~ ! 2 105 which is algebraically equivalent to
b=2 p>17
b=10, p>5

new_definition(~sig”,
“sig p = ((b = 2) ==> (17 < p))/\
((b =10) ==> (5 < p))")i;

The constraint (E__-F min) /P > 5 is imposed on the values of Emax, Emin and p by the definition,

max

new_definition( single”,
“single pr emax emin = (INT(5*pr) below (emax minus emin))”);;?!

which must be true for single precision as well as all other precisions.

Additional constraints are imposed on the parameters for double, single extended, and double
extended precisions. For double precision:

Pa 2p,

b “=210b

< 8F

min, min,
where the subscripts d and s denote double and single precision respectively, and is given by the definition,

new_definition( double”,

“double ps pd emax_s emin_s emax_d emin_d =
(single pd emax_d emin_d)/\

(b = 2) ==> ((4 + (2*p_s)) <= p_d)/\

1. The natural, integer, and real numbers are different types in the HOL system and different operators and relations are
defined on these types. The relations below, below_or_e, minus, plus, and times on the integers have the obvious meaning of less
than, less than or equal, subtraction, addition, and multiplication, respectively. The operator INT takes a natural number and maps
it into an integer number.
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(b =10) ==> ((1 + (2*p_s)) <= p_d)/\
(((INT 8 times emax_s) plus INT 7) below_or_e emax_d)/\
((emin_d below_or_e (INT 8 times emin_s)))”);:;

For extended precision, the following constraints must hold over the base precision:

E ‘28meb+7

max

E in, s 8Emin,,

mi
p.=12p,
forb =2 p,2p,+[108;(Eps ~Epin) ]

where the subscripts e and b denote the extended and base precision. These constraints are defined by,

new_definition( extended”,

“extended p_b p_e emax_b emin_b emax_e emin_e =

(((INT 8 times emax_b) plus INT 7) below_or_e emax_e)/\

(emin_e below_or_e (INT 8 times emin_b))/\

(&p_e real_ge ((&1 real_add (&2/(&10))) real mul (& p_b)))/\

((b=2) ==

((p_b + ceiling(log 2 (& (FST (REP_integer(emax_b minus emin_b))))))
<= p_e))");;?

A floating-point number of any given precision must have an exponent value within the precision max-
imum and minimum exponent. The digits must be b-radix based.

new_definition( precis”,

“precis emax emin fp =

(emin below_or_e (exponent fp))/\
((exponent fp) below_or_e emax)/\
(!n.(digits fp)n < b)");;

An implementation of the IEEE-854 will assign specific valuesto b, p, E, ., and E,_ . These values

must be shown to comply with the restrictions above. For example, for an implementation with single and
double precision with values,

b=2, p_s = 24, Emax_s = 127, Emin_s = -126, p_d = 53, Emax_d = 1023, and Emin_d = -1022
we must show that,

“p=2 ==> (b=2) \/ (b=10)";
“(b=2)/\(p_s=24) ==> (((b

It ~e

2) ==> (17 < p_s))/\

2. The ceiling function in this definition takes a real number as its argument and returns a natural number. The ceiling func-
tion of “x: real” is the least positive integer “n : num” greater than or equal to x. If x is negative, ceiling of x is zero. log 2 x is the
logarithm base 2 of x. Arithmetic operators on the real numbers are prefixed by real as for example in real_add for the binary

infixed addition operation. The operator “&“ takes a natural number and maps it to the reals. The numbers &1, &2, ... are reals
with values 1, 2, ...
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((b =10) ==> (5 < p_s)))"ii
“gingle 24 (INT 127) (neg (INT 127))”";;

“double 24 53 (INT 127) (neg (INT 127)) (INT 1023)
(neg (INT 1022))”;;

2.1 Floating-point Number Representation

Floating-point numbers are represented in HOL by their meaning: a value, and infinite, and a NaN. A
new type is created to define floating point numbers:

define_type “fp_num”

‘fp_num = finite (num#integer#(num -> num)) |
infinite num |

NaN (NaN_type#num)’;;

“finite”, “infinite”, and “NaN” become type constructors that when applied to a triple of type
“:(num#integer#(num -> num))”, an element of type “:num”, and a pair of type
“:(NaN_type#num)”, respectively, will return an element of type “: £p_num”.

A new type is used in the definition of “£p_num” above which defines signaling and quiet NaNs:

define_type “NaN_type® “NaN_type = signal | quiet™;;

The following definitions for identifying and manipulating floating-point(fp) numbers are used in the
specification of floating-point operations:

new_definition( is_finite”,
“is_finite fp = (?X.fp = (finite X))");;

new_definition( is_infinite~,
“is_infinite fp = (?X.fp = (infinite X))");;

new_definition(~is_NaN~",
“is_NaN fp = (?X.fp = (NaN X))");;

new_definition(~i_finite~,

“i finite fp = (@X.fp = (finite X))");;
new_definition( i_infinite~,

“i infinite fp = (@X.fp = (infinite X))");;

new_definition( i_NaN~,
“i NaN fp = (€X.fp = (NaN X))”);;

The first three definitions are predicates which return true when applied to a finite, infinite, and NaN fp
number, respectively, and false otherwise. The last three definitions are the inverse of the respective type
constructors and will return the argument of the constructor when applied to the appropriate fp number.
The theorems,
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|- tz.i_finite (finite z) = z
|- 1z.i_infinite (infinite z) = z
|- 1z.i_NaN (NaN z) = z

illustrate the action of the inverse functions.
Additional definitions following extract the elements of the arguments for floating point constructors
and identify properties of the argument:

new_definition(~fp_sign_d7,
“fp_sign_d fp = (€n.(n = (FST (i_finite £fp)))\/
(n = (i_infinite £fp)))”);:;

define_type “fp_sign®
“fp_sign = positive | negative~;;

new_definition( fp_sign”,
“fp sign fp = (EVEN (fp_sign_d fp)) => positive | negative”);;

new_definition( exponent”,
“exponent (s:num,Exp:integer,dig:num -> num) = ExXp”);;

new_definition( digits”,
“digits (s:num,Exp:integer,dig:num -> num) = dig”);;

new_definition( fp_is_pos~,
“fp_is_pos fp = fp_sign fp = positive”);;

new_definition( fp_is_neg”,
“fp is_neg fp = fp _sign fp = negative”);;

new_definition( fp_is_zero~,
“fp_is_zero fp = (!n.(fp_digits fp)n = 0)");;

The greatest and least magnitudes for a finite floating point number is given by:

new_definition( Gpos™
“Gpos (emax:integer)

-

(0,emax, (\d:num.b-1))");;

new_definition( Gneg"
“Gneg (emax:integer)

-

"

(1,emax, (\d:num.b-1))");;

new_definition( Lpos™,
“Lpos p (emin:integer)

(0,emin,\d:num.(d = (p-1)) => 1 | 0)");;
new_definition( Lneg”,

“Lneg p (emin:integer)

(1,emin,\d:num.(d = (p-1)) => 1 | 0)");;
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3 Exceptions and Traps

Operations on floating-point numbers can signal exceptions as a result of performing the operation.
Exceptions are declared as a new type:

define_type “except® “except_type = invalid | div_by_zero |
overflow_w_inex | underflow | underflow_w_inex | inexact |

no_excep- ;;

A signaling exception will set a status flag and, if enabled by the user, will invoke an exception han-
dling trap. If exceptions handlers are implemented then each exception should have a user controlled trap
associated with it.

The resulting value on some operations will depend on whether an exception is detected and/or a trap
is enabled. Conditions which will result in exceptions will be defined within the operation’s definition. The
status of the exception traps are defined by the S-tuple (invalid, div_by_zero, overflow, underflow, inexact).
The following functions extract the status of each of the exception traps:

new_definition( invalid_t~,
“invalid_t (tl:bool,t2:bool,t3:bool,t4:bool,t5:bool) = tl1”);;

new_definition( div_by_ zero_t~,
“div_by_ zero_t (tl:bool,t2:bool,t3:bool,t4:bool,t5:bool) = t2”);;

new_definition( overflow_t~,
“overflow_t (tl:bool,t2:bool,t3:bool,td4:bool,t5:bool) = t3”);;

new_definition( underflow_t~,
“underflow_t (tl:bool,t2:bool,t3:bool,t4:bool,t5:bool) = t4”);;

new_definition( inexact_t~,
“inexact_t (tl:bool,t2:bool,t3:bool,t4:bool,t5:bool) = t5");;

4 Rounding

Rounding will take an infinitely precise number r, characterized in the HOL system by the real num-
bers, and convert it into a floating-point representation. Four rounding modes are specified in the standard.
The rounding mode is declared as a new type:

define_type “round_m> “round_m = to_near |
to_pos_inf | to_neg_inf | to_zero';;

The rounding operation is defined by a family of functions to cover all rounding modes and argument
values. The first set of function is defined for values of r which will generate a finite floating-point repre-
sentation. A function is defined for each of the four rounding modes. These four functions take a real num-
ber, a rounding precision, and a destination precision predicate and return a finite floating-point number.
The real number argument must have value such that it can be represented by a finite floating point for the
given destination precision. Round to near is defined by,

new_definition( round2near”,
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“round2near r p precis =
(2fpl.precis fpl /\

(tfp.(precis fp) /\~(fp_value fp p = fp_value fpl p) ==>

abs(fp_value fpl p real_sub r) real_lt abs(fp_value fp p real_sub r))) =>
(éfpl.precis fpl /\ B

(1fp.(precis fp) /\~(fp_value fp p = fp_value fpl p) ==>

abs(fp_value fpl p real sub r) real_lt abs(fp_value fp p real sub r))) |
@fpl. (precis fpl) /\

(!fp. (precis fp) ==>

abs(fp_value fpl p real_sub r) real_le abs(fp_value fp p real_sub r)) /\

(EVEN ((digits fpl)(p-1)))")i;

Round to near will return a floating-point number with a unique value nearest to the real number, if one
exists. If two floating point numbers have values equally near, round to near will return the one with least
significant digit even. Round to near uses the function “£p_value” which extracts the value of a floating-
point number returning a real number. The function “£p_value” is defined by,

new_definition(  fp_value~,
“fp value (s,Exp,dig) p =
((real_neg (& 1)) pow s) real mul
((NEG Exp => (real_inv (&(b EXP (SND (REP_integer Exp))))) |
(&(b EXP (FST (REP_integer Exp)))))) real_mul
(frac_sum (\dn.& (dig dn) real mul (real_inv (&(b EXP dn)))) p)”);:;

The value function “fp_wvalue” depends in turn on the summation function

m-1
“frac_sum Fn m” = 2 Fn(n),
n=0

new_prim rec_definition( frac_sum’,
“(frac_sum Fn 0 = & 0)/\

(frac_sum Fn (SUC n) =

(Fn n) real_add (frac_sum Fn n))”);;

Round to positive infinity returns the smallest floating-point number greater than r:

new_definition( round2pinf”,
“round2pinf r p precis =
@fpl.(r real_le (fp_value fpl p))/\
(precis fpl)/\
(tfp.r real_le (fp_value fp p) ==
(fp_value fpl p) real_le (fp_value fp p))"”);::

Round to negative infinity returns the largest floating-point number less than r:

new_definition( round2ninf”,
“round2ninf r p precis =
€fpl.((fp_value fpl p) real_le r)/\
(precis fpl)/\
(!fp. (fp_value fp p) real_le r ==
(fp_value fp p) real_le (fp_value fpl p))”);:



Round to zero returns the largest magnitude floating-point number with magnitude less than the
magnitude of r:

new_definition( round2zero”,
“round2zero r p precis =
@fpl. (precis fpl)/\
(!fp. abs(fp_value fp p) real_le (abs r) ==
abs(fp_value fp p) real_le abs(fp_value fpl p))”);;

The next set of rounding functions is defined for real number arguments with unbound values. The real
number value may be outside the representable range of finite floating-point numbers. When rounding is
performed on unbounded real arguments, the rounding function must check for overflow and return an
overflow exception flag when overflow is detected. The rounding functions will also check for underflow
and inexact, and return the appropriate flag when an exception is detected.

The functions take as arguments a real number, rounding precision, traps status, rounding mode, tini-
ness detection flag, accuracy detection flag, and destination maximum and minimum exponent. They
return a floating point number and an exception flag.

Underflow and inexact detection are handled by separate functions outside the rounding operation.
Overflow is detected inside the rounding function. Also, when the real number to be rounded has magni-

E,; .. .
tude less than b ™ the rounding is handled by a separate function “denormal”.
The functions “tininess”, “accuracy”, and “underf1” are used for underflow detection. The
function “inex” is used both for underflow and inexact detection:

new_definition( tininess”,
“tininess r p mode tiny emax emin =
let round = ( (mode = to_near) => round2near |
(mode = to_pos_inf) => round2pinf |
(mode = to_neg_inf) => round2ninf |
round2zero ) in
~tiny => (~(&0 = r) /\
abs(r) real_lt (real_inv (&(b EXP (SND (REP_integer emin)))))) |
(~(&0 = r) /\
fp_value (round r p (precis_c emax emin)) p real_lt
(real_inv (&(b EXP (SND (REP_integer emin))))))” );;

new_definition( accuracy”,
“accuracy r p mode acc emax emin =
let round = ( (mode = to_near) => round2near |

(mode = to_pos_inf) => round2pinf |

(mode = to_neg_inf) => round2ninf |

round2zero ) in
~acc => ~(fp_value (round r p exp_unbound) p = r) |
~(fp_value (round r p (precis_c emax emin)) p = r)"” );;

(]

new_definition( underfl”,
“underfl r p traps mode tiny acc emax emin =
let u = (~(underflow_t traps) =>
(tininess r p mode tiny emax emin /\ accuracy r p mode acc emax emin) |
tininess r p mode tiny emax emin) in
u => underflow | no_excep” );;
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new_definition( inex",
“inex r p mode emax emin =
let round = ( (mode = to_near) => round2near |

(mode = to_pos_inf) => round2pinf |

(mode = to_neg_inf) => round2ninf |

round2zero ) in
(fp_value (round r p (precis_c emax emin)) p = r) => no_excep |
inexact” );;

When both underflow and inexact are detected the exception flag becomes underflow_w_inex:

new_definition( “underflow_inexact”,
“underflow_inexact r p traps mode tiny acc emax emin =
((underfl r p traps mode tiny acc emax emin = underflow) /\

(inex r p mode emax emin = inexact)) => underflow w_inex |
(underfl r p traps mode tiny acc emax emin = underflow)=> underflow |
(inex r p mode emax emin = inexact) => inexact |

no_excep”);;

If overflow is detected during rounding and the overflow trap handler is enabled the result of the oper-

ation will be the infinitely precise result of the operation divided by b® and then rounded. The exponent

adjustment a is chosen to be approximately 3 ((E,,,.—E

) 74) and should be divisible by twelve>:

min

new_definition(“alpha”,
“alpha emax emin =

let app = (3*(FST (REP_integer (emax minus emin)))) in
let q = €n. (48*n) < app /\ app < (48*(n+l)) in
(app - (48*Q)) < ((48*(g+l)) - app) => 12*q | 12*(q+l)");;

new_definition( r_to_near”,

“r to_near r p traps mode tiny acc emax emin =

let thr = (&(b EXP (FST (REP_integer emax)))) real _mul

(&b real_sub (real_inv(&(b EXP (p-1)))/&2)) in

let bemin = (real_inv (&(b EXP (SND (REP_integer emin))))) in

(r = &0) => (finite (0,INT 0,\n.0)), no_excep |
abs(r) real_lt bemin => denormal r p traps mode tiny acc emax emin |
abs(r) real_lt thr => (finite (round2near r p (precis_c emax emin))),
inex r p mode emax emin |
(overflow_t traps) => finite (round2near (r/(&(b EXP (alpha emax emin))))
p (precis_c emax emin)), overflow w_inex |
infinite (rsign r), overflow_w_inex *);;

3. The definition of “alpha” is overly restrictive since it gives the exponent adjustment the nearest value to

3((E s —E pin) 74) which is divisible by 12. If an implementation description uses a different value for the exponent adjust-

ment and a proof of compliance is to be performed, a new value for “alpha” should be defined consistent with the intended
implementation.
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E..
The case for |r] <b ™ is handled by the “denormal” function. If underflow is detected and the

underflow trap is enabled, denormal will return the infinitely precise result multiplied by b and then
rounded with the selected rounding mode: a

new_definition( denormal”,
“denormal r p traps mode tiny acc emax emin =
let round = ( (mode = to_near) => round2near |
(mode = to_pos_inf) => round2pinf |
(mode = to_neg_inf) => round2ninf |
round2zero ) in

(~(underflow_t traps)\/
((underflow_t traps)/\
(underfl r p traps mode tiny acc emax emin = no_excep))) =>
( (is_zero (round r p (precis_c emax emin))) =>
(finite (rsign r,INT 0,\n.0)), underflow w_inex |
(finite (round r p (precis_c emax emin))),
underflow_inexact r p traps mode tiny acc emax emin
) |
(finite (round (r real_mul (&(b EXP (alpha emax emin)))) p
(precis_c emax emin)),
underflow_inexact r p traps mode tiny acc emax emin)”);;

Round to positive infinity:

new_definition( r_to_pinf~,

“r to_pinf r p traps mode tiny acc emax emin =

let thr = real_neg (&(b EXP (FST (REP_integer emax) +1))) in

let bemin = (real_inv (&(b EXP (SND (REP_integer emin))))) in
(r = &0) => (finite (0,INT 0,\n.0)), no_excep |
abs(r) real_lt bemin => denormal r p traps mode tiny acc emax emin |
((thr real_lt r) /\ (r real_le (fp_value (Gpos emax) p)))

=> (finite (round2pinf r p (precis_c emax emin))),
inex r p mode emax emin |

(overflow_ t traps) =>finite (round2pinf (r/(&(b EXP (alpha emax emin))))

p (precis_c emax emin)), overflow w_inex |

( (r real_le thr) => finite (Gneg emax), overflow w_inex |
infinite 0, overflow w_inex )”);;

Round to negative infinity:

new_definition( r_to_ninf~,

“r to_ninf r p traps mode tiny acc emax emin =

let thr = (&(b EXP (FST (REP_integer emax) +1))) in

let bemin = (real_inv (&(b EXP (SND (REP_integer emin))))) in
(r = &0) => (finite (0,INT 0,\n.0)), no_excep |
abs(r) real_lt bemin => denormal r p traps mode tiny acc emax emin |
(((fp_value (Gneg emax) p) real_le r) /\ (r real_lt thr))

=> (finite (round2ninf r p (precis_c emax emin))),
inex r p mode emax emin |

(overflow_t traps) => finite (round2ninf (r/(&(b EXP (alpha emax emin))))
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p (precis_c emax emin)), overflow w_inex |
( (thr real_le r) => finite (Gpos emax), overflow w_inex |
infinite 1, overflow w_inex )");;

Round to zero:

new_definition( r_to_zero~,

“r to_zero r p traps mode tiny acc emax emin =

let thr = (&(b EXP (FST (REP_integer emax) +1))) in

let bemin = (real_inv (&(b EXP (SND (REP_integer emin))))) in

(r = &0) => (finite (0,INT 0,\n.0)), no_excep |

abs(r) real_lt bemin => denormal r p traps mode tiny acc emax emin |
abs(r) real_lt thr => (finite (round2zero r p (precis_c emax emin))),

inex r p mode emax emin |

(overflow_t traps) => finite (round2zero (r/(&(b EXP (alpha emax emin))))

p (precis_c emax emin)), overflow w_inex |

r real_1lt &0 => finite (Gneg emax), overflow_w_inex |

finite (Gpos emax), overflow w_inex “);;

The function “round” is the main function defining rounding. It uses the previous functions to define the
rounding operation for all rounding modes and value ranges:

new_definition( round”,

“round r p traps mode tiny acc emax emin =

(mode = to_near) => r to_near r p traps mode tiny acc emax emin

(mode to_pos_inf) => r_to_pinf r p traps mode tiny acc emax emin

(mode = to_neg_inf) => r_to_ninf r p traps mode tiny acc emax emin
r_to_zero r p traps mode tiny acc emax emin

T ———

5 Operations
In accordance with the IEEE-854 standard,

... each operation shall be performed as if it first produced an intermediate result correct to infinite
precision and with unbound range, and then coerced this intermediate result to fit in the destination’s
precision. [6, section 5, page 10]

Infinite precision for a floating-point operation is represented in the HOL system by the real numbers.
When an operation is to be performed where the argument or arguments are finite floating-point numbers,
the arguments are converted to real numbers, the operation is performed in real number arithmetic and the
result is rounded according to the selected rounding mode. When operations are performed on arguments
of different precisions, the lower precision argument is converted to the higher precision. The function
“p_conv” define such conversion:

new_definition (“p_conv’,
“p_conv fp ps pl = is_infinite fp => fp |
is_NaN fp => fp |
finite(fp_sign_d fp,fp_exponent fp,\n.n < ps => fp_digits fp n |
n<pl=>0 l
én.n < b)");;
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“p_conv” converts a fp from a lower precision with “ps” significant digits to a higher precision with
“pl” significant digits.

5.1 Arithmetic

Five operations are defined: addition, subtraction, multiplication, division, and remainder. “fp_arith” is
then defined as an executive function which checks for NaN operands, normalizes the operands, and call
an arithmetic operation based on the argument “op”. The operations are declared as a new type:

define_type “arith op” “arith_op = fpadd | fpsub | fpmul | fpdiv |
fprem °;;

Some arguments to an operation might not be valid arguments depending on the operation. Division by
zero is an example. If arguments to an operation are invalid the operation will return a NaN with an excep-
tion flag. Floating-point addition is defined by the function “fp_add”. “fp_add” takes as arguments
floating-point operands “£p1” and “f£p2”, operands’ precsion “p”, rounding precision “pr”, quiet NaN
argument “cn”, trap status “traps”, rounding mode “mode”, tininess detection flag “tiny”, accuracy
detection flag “acc”, and maximum and minimum exponents “emax” and “emin”:

new_definition (“fp_add",
“fp_add fpl fp2 p pr cn traps mode tiny acc emax emin =
(is_infinite fpl /\ is_infinite fp2 /\ ~(fp_sign fpl = fp_sign £fp2))

=> (NaN(quiet,cn),invalid) |
(is_infinite £fp1l) => (fpl,no_excep) |
(is_infinite £fp2) => (fp2,no_excep) |
((fp_is_zero fpl)/\(fp_is_zero fp2)/\(fp_sign fpl = fp_sign £fp2))

=> (fpl,no_excep) |
round ((fp_value (i_finite fpl) p) real_add

(fp_value (i_finite fp2) p)) pr traps mode tiny acc emax emin”);;

Floating-point negation changes the arithmetic sign of a floating-point number which is not a NaN:

new_definition (" fp_neg”,
“fp neg fp =
is_NaN fp => fp |
is_finite fp => (fp_is_pos fp => (finite (1,(SND (i_finite fp)))) |
finite (0,(SND (i_finite £fp)))) |
(fp_is_pos fp => infinite 1 | infinite 0)");;

Subtraction is defined in terms of negation and addition:
new_definition (“fp_sub”,
“fp sub fpl fp2 p pr cn traps mode tiny acc emax emin =
fp_add fpl (fp_neg fp2) p pr traps mode tiny acc emax emin”);;
Floating-point multiplication:
new_definition (“fp_mul~,

“fp_mul fpl fp2 p pr cn traps mode tiny acc emax emin =
((is_infinite fpl /\ fp_is_zero fp2)\/(fp_is_zero fpl /\ is_infinite £p2))
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=> (NaN(quiet,cn),invalid) |
((is_infinite fpl \/ is_infinite £p2)/\

(fp_sign fpl = fp_sign £fp2)) => (infinite 0,no_excep) |
((is_infinite fpl \/ is_infinite £p2)/\

~(fp_sign fpl = fp_sign £fp2)) - => (infinite 1,no_excep) |
(((fp_is_zero £fpl)\/(fp_is_zero fp2))/\

(fp_sign fpl = fp_sign £fp2)) => (finite (0,INT 0,\n.0)),no_excep |
(((£fp_is_zero fpl)\/(fp_is_zero £fp2))/\
~(fp_sign fpl = fp sign £fp2)) => (finite (1,INT 0,\n.0)),no_excep |

round ((fp_value (i_finite fpl) p) real_mul
(fp_value (i_finite fp2) p)) pr traps mode tiny acc emax emin”);;

Floating-point division:

new_definition (“fp_div~,

“fp div fpl fp2 p pr cn traps mode tiny acc emax emin =

((fp_is_zero fpl /\ fp_is_zero £p2)\/(is_infinite fpl /\ is_infinite £fp2))
=> (NaN(quiet,cn),invalid) |

((fp_is_zero £fp2)/\

(fp_sign fpl = fp_sign £fp2)) => (infinite 0,div_by_zero) |
((fp_is_zero £fp2)/\
~(fp_sign fpl = fp_sign £fp2)) => (infinite 1,div_by_zero) |

round ((fp_value (i_finite fpl) p) / (fp_value (i_finite fp2) p)) pr
traps mode tiny acc emax emin”);;

Floating-point remainder is defined by IEEE-854 as follows:

When y =0, the reminder r = x REM y is defined regardless of the rounding mode by the mathematical
relation r = x-y-n, where n is the integer nearest the exact value x/y; whenever |n-x/y| = 1/2, thenn
iseven. If r = 0 , its sign shall be that of x. [6, section 5.1, page 10]

The remainder function is defined in HOL by:

new_definition (" fp_rem”,
“fp rem fpx fpy p (pr:num) cn traps (mode:round_m) tiny acc emax emin =
(is_infinite fpx \/ fp_is_zero fpy) => (NaN(quiet,cn),invalid) |
(is_infinite fpy) => (fpx,no_excep) |

(let r = (fp_value (i_finite fpx) p real_sub

((fp_value (i_finite fpy) p real_mul

(real_to_int_real

((fp_value (i_finite fpx) p) / (fp_value (i_finite fpy) p))))))

in

(r = &0) =>

(finite (fp_sign_d £fpx,INT 0,\n.0)),no_excep |

round r p traps to_near tiny acc emax emin)”);;

The integer n nearest the exact value x/y is obtained using the function “real_to_int_real”.

The function “real_to_int_real”, defined in section 5.8, takes a real number and returns the nearest
real number with integer value.

“fp_arith” is the executive arithmetic function which filters NaN operands, normalizes the oper-
ands, and selects the arithmetic operation. When both operands are quiet NaNs the argument “sel” deter-
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mines which of the operands will be returned by the arithmetic operaion. The arguments “p1” and “p2”
determine the operands’ precision and if normalization is needed. “pr” is the number of significant digits

used in the rounding operation®. The destination precision is the largest of the two precisions, in accor-
dance with IEEE-854 standard requirements.

new_definition (“fp_arith”,

“fp arith op fpl £fp2 pl p2 pr cn sel traps mode tiny acc emaxl emax2 eminl
emin2 =

(\fplc,fp2c,p,emax,enin.

((is_s_NaN fpl) \/ (is_s_NaN £fp2)) => (NaN(quiet,cn),invalid)

((is_qg_NaN fpl) /\ (is_g_NaN fp2)) => ((sel => fpl | £fp2),no_excep)

|

I

(is_g_NaN fpl) => (fpl,no_excep) |
(is_g_NaN £p2) => (fp2,no_excep) |
(op = fpadd) => fp_add fplc fp2c p pr cn traps mode tiny acc emax emin |
(op = fpsub) => fp_sub fplc fp2c p pr cn traps mode tiny acc emax emin |
(op = fpmul) => fp mul fplc fp2c p pr cn traps mode tiny acc emax emin |
(op = fpdiv) => fp_div fplc fp2c p pr cn traps mode tiny acc emax emin |

)

fp_rem fplc fp2c p pr cn traps mode tiny acc emax emin
((pl = p2) => (fpl,£fp2,pl,emaxl,eminl) |
(pl < p2) => ((p_conv fpl pl p2),£fp2,p2,emax2,emin2) |
(fpl, (p_conv fp2 p2 pl),pl,emaxl,eminl))”);;

5.2 Square root

The result is defined and is positive for all operands greater than zero, except that sqr of -0 is -0.

new_definition (“fp_sqr",
“fp sqr fp p pr cn traps mode tiny acc emax emin =

(is_s_NaN £fp) => (NaN(quiet,cn),invalid) |
(is_qg_NaN fp) => (fp,no_excep) |
((fp_is_neg fp) /\ ~(fp_is_zero fp)) => (NaN(quiet,cn),invalid) |
(is_infinite fp) => (infinite 0,no_excep) |
(fp_is_zero fp) => fp, no_excep |

(round (sqrt (fp_value (i_finite fp) p))
pr traps mode tiny acc emax emin)”);;

5.3 Precision conversions

Conversion between floating-point numbers of all precisions shall be possible. When converting from
a lower to a higher precision the result will be exact. Conversion from a higher to lower precision may sig-
nal inexact.

new_definition (“fp_p_conv’,
“fp_p _conv fp pl p2 cn traps mode tiny acc emax2 emin2 =

4. In most cases rounding precision is the precision of its destination. However, in systems where the result is always deliv-
ered to double or extended destinations, the user has the option of specifying a lower rounding precision than the destination preci-
sion. The result will be stored with the exponent range of the higher precision.
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(is_s_NaN fp) => (NaN(quiet,cn),invalid)

(is_g_NaN £fp) => (fp,no_excep)
(is_infinite £fp) => (fp,no_excep)
(pl < p2) => ((p_conv fp pl p2),no_excep)

(Pl = p2) =>  (fp,no_excep)

round (fp_value (i_finite fp) pl) p2 traps mode tiny acc emax2 emin2”);;

5.4 Conversion between Floating-point and Integer

Floating-point to integer conversion is defined in HOL by converting finite floating-point numbers to
an integer number and converting infinities and NaNs to an unspecified integer number:

new_definition (“fp_int_conv”,
“fp_int_conv fp p mode =

(is_s_NaN fp) => ran_int, invalid
(is_g_NaN fp) => ran_int, no_excep
(is_infinite fp) => ran_int, no_excep
(fp_is_zero £fp) => INT 0, no_excep

finite2int fp p mode, exc3 fp p mode”);;

The unspecified integer number is:

new_definition (“ran_int",
“ran_int = @N:integer.T”);;

The conversion of non-zero finite floating-point numbers (of type “:fp_num”) to integer numbers (of

type “: integer”) is defined by :

new_definition (" finite2int”,
“finite2int fp p mode =

let r = abs(fp_value (i_finite fp) p) in
let n =
( (mode

to_near) =>
( (EVEN (floor r)) =>
floor (&(ceiling (&2 real_mul r))/&2)
ceiling (&(floor (&2 real_mul r))/&2)
to_pos_inf) =>
( (fp_is_neg fp)
floor r |
ceiling r )
to_neg_inf) =>
( (fp_is_neg fp)
ceiling r |
floor r )
floor r ) in
fp_is_neg fp => neg (INT n) |
INT n b BHH

(mode

>

(mode

Il
\

The function “exc3” defines the inexact exception flag for the floating-point to integer conversion:

new_definition (“exc3”,
“exc3 fp p mode =
let r = abs(fp_value (i_finite fp) p) in
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let N = finite2int fp p mode in
fp_is_neg fp =>
( (abs r = &(SND (REP_integer N))) => no_excep |

~ inexact ) |
( ( r = &(FST (REP_integer N))) => no_excep |
inexact ) “)is

Integer to floating point is accomplished by converting the integer number to a real number and using
the round function to obtain a floating-point number.

new_definition( int_fp_conv",

“int_fp conv N p traps mode tiny acc emax emin =

let r = ( NEG N => real_neg (&(SND (REP_integer N))) |
&(FST (REP_integer N)) ) in

FST (round r p traps mode tiny acc emax emin)”);;

5.5 Conversion of Floating-point to Integral valued floating-point

Conversion of floating-point to an integer valued floating-point is defined by conversion of floating-
point to an integer and from integer back to floating point. This conversion leaves infinities and quiet NaNs
unchanged and generates an invalid exception for signaling NaNs.

new_definition (“fp_fp_int_conv™,
“fp_fp _int_conv fp p cn traps mode tiny acc emax emin =

(is_s_NaN fp) => (NaN(quiet,cn)), invalid |
(is_g_NaN £fp) => fp, no_excep |
(is_infinite fp) => fp, no_excep |
(fp_is_zero fp) => fp, no_excep |

((exc3 fp p mode = no_excep) =>
fp, no_excep |
(int_fp _conv (finite2int fp p mode) p traps mode tiny acc emax emin),
inexact)”);;

When the conversion from floating-point to integer is exact (exc3 = no_excep) the floating-point num-
ber already has an integral value and no conversion is necessary. When the conversion from floating-point
to integer is inexact conversion takes place and the inexact exception is raised.

5.6 Conversion between floating-point and decimal string

Decimal strings are strings of characters representing decimal numbers or a string of characters repre-
senting non-valued entities. A partial characterization of a decimal string is performed in HOL by defining
anew type:

define_type “decimal_string~ “decimal_string = quiet_nan | signaling_nan |
nan | unrecognizable | nzero | pzero | zero | ninf | pinf | inf |
format real “;;

The elements “nzero”, “pzero”, “zero”, and “format real” represent values. The elements
“quiet_nan”, “signaling_nan”, “nan”, “unrecognizable”, “ninf”, “pinf”, and “inf”
represent non-valued decimal strings. Note that there exists an overlap in the representation of the value 0.
The value of a decimal string “format real” is the argument “real” to the type constructor “format”.
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new_definition(~ds_value”,
“ds_value ds = @r.ds = (format r)”);;

The floating-point number corresponding to each of the decimal string elements is given by the function:

new_definition(“ds_£fp conv",
“ds_fp conv ds p cn traps mode tiny acc emax emin =

(ds = quiet_nan) => (NaN(quiet,cn)), no_excep |
.(ds = signaling_nan) => (NaN(sign,cn)), no_excep |
(ds = nan) => (NaN(sign,cn)), no_excep |
(ds = unrecognizable) => (NaN(quiet,cn)), invalid |
(ds = nzero) => finite(1,INT O0,\n.0), no_excep |
(ds = pzero) => finite(0,INT 0,\n.0), no_excep |
(ds = zero) => finite(0,INT 0,\n.0), no_excep |
(ds = ninf) => infinite 1, no_excep |
(ds = pinf) => infinite 0, no_excep |
(ds = inf) => infinite 0, no_excep |

round (ds_value ds) p traps mode tiny acc emax emin”);;

Floating-point to decimal string conversion maps floating-point numbers to the corresponding decimal
strings. Floating-point to decimal string conversion is defined in a relational style to permit more than one
decimal string for a given floating-point number. The predicate “£p_ds_conv” take as arguments float-
ing-point “£p”, floating-point precision “p” and decimal string “ds”:

new_definition( fp_ds_conv~,
“fp ds_conv fp p ds =

(is_s_NaN fp) => ((ds=(signaling_nan,invalid))\/(ds=(nan,invalid))) |
(is_g NaN fp) => ((ds=(quiet_nan,no_excep))\/(ds=(nan,no_excep))) |
(fp_is_zero fp/\fp_is_neg £fp) => (ds = (nzero, no_excep)) |
(fp_is_zero f£fp) => ((ds=(pzero,no_excep))\/(ds=(zero,no_excep))) |
(is_infinite fp/\fp_is neg fp) => (ds = (ninf, no_excep)) |
(is_infinite fp) => ((ds=(pinf,no_excep))\/(ds=(inf,no_excep))) |

(ds = format (fp_value (i_finite fp) p),no_excep)”);;

5.7 Comparison

For any two arbitrary floating-point numbers, one and only one of the following relations must hold:
“less than”, “equal”, greater than”, or “unordered”. The four relations between floating-point numbers are
defined by the type:

define_type “relations” “relations = less_than | equal | greater_ than |
unordered”;;

The comparison operation can be defined in two optional ways: 1) by returning one of the possible
four relations between the arguments; 2) by returning true or false on a given predicate. The first option is
specified by the function:

new_definition( relation~,
“relation fpl fp2 pl p2 =
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(is_s_NaN fpl\/ is_s_NaN fp2) => unordered, invalid |

(is_g NaN fpl\/ is g NaN £p2) => unordered, no_excep |
(is_infinite fpl/\is_infinite fp2/\(fp_sign fpl = fp_sign £fp2))

=> equal, no_excep |

(is_infinite fpl/\(fp_is_neg fpl) => less_than, no_excep |

(is_infinite fpl/\(fp_is_pos fpl) > greater_than, no_excep |

I

I

(is_infinite fp2/\(fp is_neg fp2) => greater_than, no_excep
(is_infinite fp2/\(fp_is_pos fp2) => less_than, no_excep
(fp_value (finite fpl) pl) real_lt (fp_value (finite £fp2) p2)
=> less_than, no_excep |
(fp_value (finite fpl) pl) = (fp_value (finite fp2) p2)
=> equal, no_excep |
greater_than, no_excep “);;

If the comparison operation is defined in terms of predicates, the following HOL definitions list six
predicates that must be provided by the implementation and a seventh predicates which is desirable. The
predicates are defined in terms of the function “relation”.

new_definition(“EQ",

“EQ fpl fp2 pl p2 =

(FST (relation fpl fp2 pl p2) = less_than) => F, no_excep |

(FST (relation fpl fp2 pl p2) equal) => T, no_excep |

(FST (relation fpl fp2 pl p2) = greater_than) => F, no_excep |
F, no_excep”);

.
’

new_definition("NE",
“NE fpl fp2 pl p2 =

(FST (relation fpl fp2 pl p2) = less_than) => T, no_excep |

(FST (relation fpl fp2 pl p2) = equal) => F, no_excep |

(FST (relation fpl fp2 pl p2) = greater_than) => T, no_excep |
T, no_excep”);;

new_definition(~GT",

“GT fpl fp2 pl p2 =

(FST (relation fpl fp2 pl p2) = less_than) => F, no_excep |

(FST (relation fpl fp2 pl p2) equal) => F, no_excep |
|

(FST (relation fpl fp2 pl p2) = greater_than) => T, no_excep
F, invalid”);;

new_definition( GE~,
“GE fpl fp2 pl p2 =

(FST (relation fpl fp2 pl p2) = less_than) => F, no_excep |
(FST (relation fpl fp2 pl p2) = equal) => T, no_excep |
(FST (relation fpl fp2 pl p2) = greater than) => T, no_excep |

F, invalid”);;

new_definition("LT",

“LT fpl fp2 pl p2 =

(FST (relation fpl fp2 pl p2) = less_than) => T, no_excep |

(FST (relation fpl fp2 pl p2) equal) => F, no_excep |

(FST (relation fpl fp2 pl p2) = greater_ than) => F, no_excep |
F, invalid”);;
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new_definition(“LE",
“LE fpl £fp2 pl p2 =
(FST (relation fpl fp2 pl p2)
(FST (relation fpl fp2 pl p2)
(FST (relation fpl fp2 pl p2)

less_than) => T, no_excep |
equal) => T, no_excep |
greater_than) => F, no_excep |

F, invalid”);;

new_definition(“UN",

“GT fpl £fp2 pl p2 =

(FST (relation fpl fp2 pl p2) = less_than) => F, no_excep

(FST (relation fpl fp2 pl p2) equal) => F, no_excep

(FST (relation fpl fp2 pl p2) = greater_than) => F, no_excep
T, no_excep”)

L P —

.
’

5.8 Supporting functions

This section includes some functions that are used within the definition of the IEEE-854 standard in
the HOL system, but are more of a general nature than specific to the standard.

The function “real_to_int_real r” delivers the integer real number nearest “r”. If two such
numbers exist, “real_to_int_real” delivers an even integer real number.

new_definition(“real_to_int_real”,
“real_to_int_real r = (
(r real_ge &0) =>
(&
(((&(ceiling r) real_sub r) real_lt (r real_sub &(floor r))) => ceiling r |
((r real_sub &(floor r)) real_lt (&(ceiling r) real_sub r)) => floor r |
(én.((n = ceiling r)\/(n = floor r))/\(EVEN n))))

I

let rn = abs r in
(real_neg (&
(((&(ceiling rn) real_sub rn) real_lt (rn real_sub &(floor rn))) => ceiling rn
((rn real_sub &(floor rn)) real_lt (&(ceiling rn) real_sub rn)) => floor rn |
(én.((n = ceiling rn)\/(n = floor rn))/\(EVEN n)))))
)7)id

Logarithm base n of x is defined in terms of the natural logarithm provided in the reals library

new_definition( log”,
“log n x = (1ln x) real_ mul (real_inv (ln (& n)))");;

The ceiling function when applied to a number “x:real” will return the least number “n:num”
greater or equal to x. This function is only valid for non-negative values of x. When x is negative ceiling of
X is zero.

new_definition( ceiling”,

“ceiling x = @n.((& n) real_ge x) /\ (!i.((& i) real _ge x) ==> n <= i)");;

The floor function when applied to a number “x:real” will return the greatest “n : num” less than or
equal to x. Floor is only valid for non-negative arguments. When x is negative floor of x is an undefined
natural number.

new_definition( floor~,
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“floor x = @n.((& n) real le x) /\ (1i.((& i) real le x) ==> i <= n)");;
The function rsign returns a 1 if its argument of type “:real” is negative and 0 otherwise.
new_definition( rsign”,

“rgign r = r real_1lt &0 => 1 | 0" );;
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